Search results

1 – 2 of 2
Article
Publication date: 24 March 2023

Runling Peng, Jinyue Liu, Wei Wang, Peng Wang, Shijiao Liu, Haonan Zhai, Leyang Dai and Junde Guo

This study aims to investigate the synergistic friction reduction and antiwear effects of lyophilized graphene loading nano-copper (RGO/Cu) as lubricating oil additives, compared…

76

Abstract

Purpose

This study aims to investigate the synergistic friction reduction and antiwear effects of lyophilized graphene loading nano-copper (RGO/Cu) as lubricating oil additives, compared with graphene.

Design/methodology/approach

The friction performance of freeze-drying graphene (RGO) and RGO/Cu particles was investigated at different addition concentrations and under different conditions.

Findings

Graphene plays a synergistic friction reduction and antiwear effect because of its large specific surface area, surface folds and loading capacity on the nanoparticles. The results showed that the average friction coefficients of RGO and RGO/Cu particles were 22.9% and 6.1% lower than that of base oil and RGO oil, respectively. In addition, the widths of wear scars were 62.3% and 55.3% lower than those of RGO/Cu particles, respectively.

Originality/value

The RGO single agent is suitable for medium-load and high-speed conditions, while the RGO/Cu particles can perform better in the conditions of heavy load and high speed.

Details

Industrial Lubrication and Tribology, vol. 75 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 April 2023

Yukun Wei, Leyang Dai, YanFei Fang, Chen Xing Sheng and Xiang Rao

The purpose of this paper is to enhance the characteristics of TiO2 nanoparticles (NPs). Because these NPs stick together easily and are difficult to distribute evenly, they…

Abstract

Purpose

The purpose of this paper is to enhance the characteristics of TiO2 nanoparticles (NPs). Because these NPs stick together easily and are difficult to distribute evenly, they cannot be used extensively in lubricating oils. Altering TiO2 was recommended as an alternate way for making NPs simpler to disperse.

Design/methodology/approach

Through dielectric barrier discharge plasma (DBDP)-assisted ball mill diagnostics and modeling of molecular dynamics, TiO2@PEG-400 NPs were produced using the DBDP-assisted ball mill. The NPs’ microstructure was examined using FESEM, TEM, XRD, FT-IR and TG-DSC. Using the CFT-1 reciprocating friction tester, the tribological properties of TiO2@PEG-400 NPs as base oil additives were studied. EDS and XPS were used to examine the surface wear of the friction pair.

Findings

Tribological properties of the modified NPs are vastly superior to those of the original NPs, and the lipophilicity value of TiO2 NPs was improved by 200%. It was determined through tribological testing that TiO2@PEG-400’s exceptional performance might be attributable to a chemical reaction film made up of TiO2, Fe2O3, iron oxide and other organic chemicals.

Originality/value

This work describes an approach for preventing the aggregation of TiO2 NPs by coating their surface with PEG-400. In addition, the prepared NPs can enhance the tribological performance of lubricating oil. This low-cost, high-performance lubricant additive has tremendous promise for usage in marine engines to minimize operating costs while preserving navigational safety.

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 2 of 2